Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Spray Characteristics of Gasoline-Ethanol Fuel Blends under Flash-Boiling Conditions

2019-04-02
2019-01-0297
The spray structure and vaporization processes of flash-boiling sprays in a constant volume chamber under a wide range of superheated conditions were experimentally investigated by a high speed imaging technique. The Engine Combustion Network’s Spray G injector was used. Four fuels including gasoline, ethanol, and gasoline-ethanol blends E30 and E50 were investigated. Spray penetration length and spray width were correlated to the degree of the superheated degree, which is the ratio of the ambient pressure to saturated vapor pressure (pa/ps). It is found that parameter pa/ps is critical in describing the spray transformation under flash-boiling conditions. Three distinct stages namely the slight flash-boiling, the transition flash-boiling, and the flare flash-boiling are identified to describe the transformation of spray structures.
Technical Paper

High-Load Compression-Ignition Engine Emissions Reduction with Inverted Phi-Sensitivity Fuel Using Multiple Injection Strategies

2019-04-02
2019-01-0554
Inverted phi (ϕ)-sensitivity is a new approach of NOx reduction in compression-ignition (C.I.) engines. Previously, pure ethanol (E100) was selected as the preliminary test fuel in a single injection compression-ignition engine, and was shown to have good potential for low engine-out NOx emissions under low and medium load conditions due to its inverted ignition sequence. Under high load, however, the near-stoichiometric and non-homogeneous fuel/air distribution removes the effectiveness of the inverted ϕ-sensitivity. Therefore, it is desirable to recover the combustion sequence in the chamber such that the leaner region is burned before the near-stoichiometric region. When the combustion in near-stoichiometric region is inhibited, the temperature rise of that region is hindered and the formation of NOx is suppressed.
Technical Paper

Combustion Characteristics in a Constant Volume Chamber of Diesel Blended with HTL

2019-04-02
2019-01-0578
There are a few different ways in which biofuels can be sourced, with the most popular coming from agricultural sources. An alternative approach is to utilize biowaste. An estimated 20 million dry tons of volatile organic compounds, or biowaste, is annually deposited in US municipal wastewaters. Most of this biowaste energy content is not recovered and, as a result, the biowaste could be a massive potential source of renewable energy. Biocrude diesel is converted from wet biowaste via hydrothermal liquefaction (HTL). Three types of feedstocks (algae, swine manure, and food processing waste) were converted into biocrude oil via HTL. From the previous experiments done in an AVL 5402 single-cylinder diesel engine, it was observed that the presence of 20% of HTL in the blend performed similarly during combustion to pure diesel. By studying these mixtures in a constant volume chamber, these observations could be compared to the results in the diesel engine.
Technical Paper

Research on the Cylinder-by-cylinder Variations Detection and Control Algorithm of Diesel Engine

2015-04-14
2015-01-1644
The cylinder-by-cylinder variations have many bad impacts on the engine performance, such as increasing the engine speed fluctuation, enlarging the torsional vibration and noise. To deal with this problem, the impact mechanism of cylinder-by-cylinder variations on low order torsional vibration has been studied in this paper, and subsequently a new individual cylinder control strategy was designed by processing the instantaneous crankshaft rotation speed signal, detecting the cylinder-by-cylinder variation and using feed-back control. The acceleration characteristics of each cylinder in each engine cycle were compared with each other to extract the variation index. The feed-back control algorithm was based on the regulation of the fuel injection according to the detected variation level.
Technical Paper

A Reduced Chemical Kinetic Mechanism of Toluene Reference Fuel (toluene/n-heptane) for Diesel Engine Combustion Simulations

2015-04-14
2015-01-0387
In the present study, we developed a reduced chemical reaction mechanism consisted of n-heptane and toluene as surrogate fuel species for diesel engine combustion simulation. The LLNL detailed chemical kinetic mechanism for n-heptane was chosen as the base mechanism. A multi-technique reduction methodology was applied, which included directed relation graph with error propagation and sensitivity analysis (DRGEPSA), non-essential reaction elimination, reaction pathway analysis, sensitivity analysis, and reaction rate adjustment. In a similar fashion, a reduced toluene mechanism was also developed. The reduced n-heptane and toluene mechanisms were then combined to form a diesel surrogate mechanism, which consisted of 158 species and 468 reactions. Extensive validations were conducted for the present mechanism with experimental ignition delay in shock tubes and laminar flame speeds under various pressures, temperatures and equivalence ratios related to engine conditions.
Technical Paper

Experimental and Numerical Investigation of Soot Mechanism of Acetone-Butanol-Ethanol (ABE) with Various Oxygen Concentrations

2015-04-14
2015-01-0389
A multi-step acetone-butanol-ethanol (ABE) phenomenological soot model was proposed and implemented into KIVA-3V Release 2 code. Experiments were conducted in an optical constant volume combustion chamber to investigate the combustion and soot emission characteristics under the conditions of 1000 K initial temperature with various oxygen concentrations (21%, 16%, 11%). Multi-dimensional computational fluid dynamics (CFD) simulations were conducted in conjunction under the same operation conditions. The predicted soot mass traces showed good agreement with experimental data. As ambient oxygen decreased from 21% to 11%, ignition delay retarded and the distribution of temperature became more homogenous. Compared to 21% ambient oxygen, the peak value of total soot mass at 16% oxygen concentration was higher due to the suppressed soot oxidation mechanism.
Technical Paper

Investigating the Impact of Acetone on the Performance and Emissions of Acetone-Butanol-Ethanol (ABE) and Gasoline Blends in an SI Engine

2015-04-14
2015-01-0909
Alcohols, especially n-butanol, have received a lot of attention as potential fuels and have shown to be a possible alternative to pure gasoline. The main issue preventing butanol's use in modern engines is its relatively high cost of production. ABE, the intermediate product in the ABE fermentation process for producing bio-butanol, is being studied as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. In this respect, it is desirable to estimate the performance of different ABE blends to determine the best blend and optimize the production process accordingly.
Technical Paper

Combustion and Emissions Performance of a Spark Ignition Engine Fueled with Water Containing Acetone-Butanol-Ethanol and Gasoline Blends

2015-04-14
2015-01-0908
Butanol has proved to be a very promising alternative fuel in recent years. The production of bio-butanol, typically done using the acetone-butanol-ethanol (ABE) fermentation process is expensive and consumes a lot of energy. Hence it is of interest to study the intermediate fermentation product, i.e. water-containing ABE as a potential fuel. The combustion and emissions performance of ABE29.5W0.5 (29.5 vol.% ABE, 0.5 vol.% water and gasoline blend), ABE30 (30 vol.% ABE and gasoline blend) and ABE0 (pure gasoline) were investigated in this study. The results showed that ABE29.5W0.5 enhanced engine torque by 9.6%-12.7% and brake thermal efficiency (BTE) by 5.2%-11.6% compared to pure gasoline, respectively. ABE29.5W0.5 also showed similar brake specific fuel consumption (BSFC) relative to pure gasoline.
Technical Paper

Comparative Study of High-Alcohol-Content Gasoline Blends in an SI Engine

2015-04-14
2015-01-0891
Ethanol is the most widely used renewable fuel in the world now. Compared to ethanol, butanol is another very promising renewable fuel for internal combustion engines. It is less corrosive, and has higher energy density, lower vapor pressure and lower solubility in water. However, the use of Acetone-Butanol-Ethanol (ABE), an intermediate product in ABE fermentation, presents a cost advantage over ethanol and butanol and has attracted much attention recently. In this study, three high-alcohol-content gasoline blends (85% vol. of ethanol, butanol and ABE, referred as E85, B85 and ABE85, respectively) were investigated in a port-injection spark-ignition engine. ABE has a component ratio of 3:6:1. In addition, pure gasoline was also tested as a baseline for comparison. All fuels were tested under the same conditions (1200 RPM, Φ = 0.83−1.25, BMEP = 3 bar).
Technical Paper

Characterization Spray and Combustion Processes of Acetone-Butanol-Ethanol (ABE) in a Constant Volume Chamber

2015-04-14
2015-01-0919
Recent research has shown that butanol, instead of ethanol, has the potential of introducing a more suitable blend in diesel engines. This is because butanol has properties similar to current transportation fuels in comparison to ethanol. However, the main downside is the high cost of the butanol production process. Acetone-butanol-ethanol (ABE) is an intermediate product of the fermentation process of butanol production. By eliminating the separation and purification processes, using ABE directly in diesel blends has the potential of greatly decreasing the overall cost for fuel production. This could lead to a vast commercial use of ABE-diesel blends on the market. Much research has been done in the past five years concerning spray and combustion processes of both neat ABE and ABE-diesel mixtures. Additionally, different compositions of ABE mixtures had been characterized with a similar experimental approach.
Technical Paper

Numerical study on wall film formation and evaporation

2014-04-01
2014-01-1112
The numerical models presented in this study are established based on discrete phase model (DPM) of spray dispersion and evaporation considering the cold wall operating condition of port injection system. All the models were implemented into the CFD software FLUENT. Gas flow and film flow and spray are coupled by mass, momentum and energy transfer due to spray impingement, film evaporation and surface shear stress. Influences of impact parameters including injection height, injection duration and injection angle on the formation and evaporation of wall-film are discussed. The results show that, with the increase of injection height, the maximum film thickness and wall film ratio decrease, and fuel vapor mass ratio increases. The reductions of film thickness and wall film ratio are not obvious as the increasing of injection height. Extending the injection duration could add the maximum film thickness and film area.
Technical Paper

A Preliminary Investigation of the Performance and Emissions of a Port-Fuel Injected SI Engine Fueled with Acetone-Butanol-Ethanol (ABE) and Gasoline

2014-04-01
2014-01-1459
Alcohols, because of their potential to be produced from renewable sources and their characteristics suitable for clean combustion, are considered potential fuels which can be blended with fossil-based gasoline for use in internal combustion engines. As such, n-butanol has received a lot of attention in this regard and has shown to be a possible alternative to pure gasoline. The main issue preventing butanol's use in modern engines is its relatively high cost of production. Acetone-Butanol-Ethanol (ABE) fermentation is one of the major methods to produce bio-butanol. The goal of this study is to investigate the combustion characteristics of the intermediate product in butanol production, namely ABE, and hence evaluate its potential as an alternative fuel. Acetone, n-butanol and ethanol were blended in a 3:6:1 volume ratio and then splash blended with pure ethanol-free gasoline with volumetric ratios of 0%, 20%, 40% to create various fuel blends.
Technical Paper

An Experimental Investigation of the Combustion Characteristics of Acetone-Butanol-Ethanol-Diesel Blends with Different ABE Component Ratios in a Constant Volume Chamber

2014-04-01
2014-01-1452
Acetone-Butanol-Ethanol (ABE), an intermediate product in the ABE fermentation process for producing bio-butanol, is considered a promising alternative fuel because it not only preserves the advantages of oxygenated fuel which typically emit less pollutants compared to conventional diesel, but also lowers the cost of fuel recovery for each individual component during the fermentation. With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. In this respect, it is desirable to estimate the performance of different ABE blends to determine the best blend and optimize the production process accordingly. ABE fuels with different component ratio, (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %), were blended with diesel and tested in a constant volume chamber.
Technical Paper

Effect of Injection Parameters and EGR on the Particle Size Distributions and Exhaust Emissions for Diesel and Biodiesel Fuels in CRDI Engine

2014-04-01
2014-01-1612
Biodiesel is considered one of the most promising alternative fuels to petrol fuels. In this study, an attempt has been made to investigate and compare the effect of fuel injection pressure, injection timing, and exhaust gas recirculation (EGR) ratio on the particle size distributions and exhaust emissions of the diesel and biodiesel produced from waste cooking oil (WCO) used in a common rail direct injection (CRDI) diesel engine. The engine tests were conducted at two injection pressures (800 and 1600 bar), two injection timings (25 and 5 deg before top dead center (bTDC) and three EGR ratios (10%, 20% 30%) at a constant fuel injection energy per stroke and engine speed (1200 r/min). The results indicated that carbon monoxide (CO) and hydrocarbon (HC) emissions of biodiesel were slightly lower, but nitrogen oxide (NOx) emissions were slightly higher, than those of diesel fuel under most operating conditions.
Technical Paper

Different Percentage of Acetone-Butanol-Ethanol (ABE) and Diesel Blends at Low Temperature Condition in a Constant Volume Chamber

2014-04-01
2014-01-1257
The purpose of this study is to investigate the possibility of acetone-butanol-ethanol (ABE) blended with diesel without further component recovery which has high costs blocking the industrial-scale production of bio-butanol. The combustion characteristics of ABE and diesel blends were studied in a constant volume chamber. In this study, 50% and 80% vol. ABE (without water) were mixed with diesel and the vol. % of acetone, butanol and ethanol were kept at 30%, 60% and 10% respectively. The in-cylinder pressure was recorded using a pressure transducer and the time-resolved natural luminosity was captured by high speed imaging. Combustion visualization using laser diagnostics would provide crucial fundamental information of the fuel's combustion characteristics. With the different percentage of the ABE blended in the diesel, the soot oxidation, the ignition delay and the soot lift-off length were studied in this work.
Technical Paper

Impact of Thermal Architecture on Electric Vehicle Energy Consumption/Range: A Study with Full Vehicle Simulation

2021-04-06
2021-01-0207
Electric vehicles suffer from dramatic energy loss in cold and hot climate, resulting in range reduction up to 50% at -20 °C ambient and 30% at 40 °C ambient. Energy consumption by thermal management systems is responsible for most of the range loss. To study the impact of thermal architectural choices on energy consumption at vehicle level, full vehicle level simulations were carried out with an in-house simulation platform, which was built as a system-engineering tool to study the interaction among hierarchies of vehicle systems, subsystems and components. The top-level simulation system consists of a driver model, an environment model, a control system model and a vehicle plant model. The plant model consists of models for a complete thermal management system (e.g., coolant, refrigerant, cabin HVAC and underhood air systems), an integrated drive unit (e.g., motor, inverter and gearbox), a battery pack, chassis, aerodynamics, etc.
Technical Paper

Computational Study of the Equivalence Ratio Distribution from a Diesel Pilot Injection with Different Piston Geometry, Injection Timing and Velocity Initialization in a HSDI Engine

2014-04-01
2014-01-1110
In the new combustion strategies such as RCCI and dual-fuel combustion, the diesel pilot injection plays a pivotal role as it determines the ignition characteristics of the mixture and ultimately the combustion and emission performance. In this regard, equivalence ratio distribution resulted from the pilot injection becomes very important. In this work, computation study is carried out using KIVA-3V to simulate the engine compression stroke from intake valve close (IVC) to close to TDC so as to investigate the impact of piston geometry, injection start timing and flow initialization on the equivalence ratio distribution from a pilot injection in HSDI engine.
Technical Paper

Diesel Engine Torque Estimation Based on ENN

2015-04-14
2015-01-0232
In view of the requirements of torque-based engine control and coordinated control for hybrid powertrain systems during mode switching and shifting, engine torque needs to be known. A framework for torque generated model was established, and the influencing factors of engine effective torque were analyzed. Then steady and transient performance tests of DEUTZ 6V1015 diesel engine were designed in order to get sample data to train ENNs. By use of the trained ENNs the estimations of both steady and transient friction torque and indicated thermal efficiency were completed, results were: the estimation error of friction torque and indicated thermal efficiency was less than 5%. Then the complete torque generated model was established by embedding the trained ENNs, and the estimation of effective torque was done, results were: the estimation error was less than 5%.
Technical Paper

CFD Simulation of DI Diesel Truck Engine Combustion Using VECTIS

2000-10-16
2000-01-2940
CFD simulations have been conducted to investigate the combustion in a direct-inject (DI) diesel engine using the Ricardo engine CFD program VECTIS and the Ricardo Two-Zone Flamelet (RTZF) combustion model. The simulation program covers full load and part load operating conditions, each including 6 to 7 cases forming an injection timing swing. CFD simulation results are compared against engine tests for the in-cylinder pressures and NOx emissions. The comparison shows that the RTZF combustion model performs well in all cases studied with no tuning of model coefficients necessary. The detailed time history of spray, fuel distribution and flame development obtained from the CFD simulation provides useful information towards gaining a better understanding of the features of combustion in DI diesel engines.
Technical Paper

Effect of n-Butanol Addition on Combustion and Emission Characteristics of HTL and Diesel Blends

2020-04-14
2020-01-0393
HTL is a kind of biodiesel converted from wet biowaste via hydrothermal liquefaction (HTL), which has drawn increasing attention in recent years due to its wide range of raw materials (algae, swine manure, and food processing waste). However, from the previous experiments done in a constant volume chamber, it was observed that the presence of 20% of HTL in the blend produced as much soot as pure diesel at in chamber environment oxygen ratio of 21%, and even more soot at low oxygen ratios. It was also observed that n-butanol addition could reduce the soot emission of diesel significantly under all tested conditions. In this work, the spray and combustion characteristics of HTL and diesel blends with n-butanol added were investigated in a constant volume chamber. The in-chamber temperature and oxygen ranged from 800 to 1200 K and 21% to 13%, respectively, covering both conventional and low-temperature combustion (LTC) regimes.
X